
Python 3.8+ Cheatsheet
https://winstonbrown.me

Shortcut / Concept Description Example

List Comprehensions Create lists in one line, filtering or
modifying elements.

[x**2 for x in range(10) if x % 2 == 0]

Dictionary Comprehensions Generate dictionaries on the fly
with custom keys and values.

{x: x**2 for x in range(5)}

Lambda Functions Write small anonymous functions
inline, useful for quick operations.

sorted(data, key=lambda x: x['age'])

F-strings Embed expressions directly in
strings for clean, efficient
formatting.

name = "Winston"; f"Hello, {name}!"

Enumerate Get index and value from an
iterable in a loop.

for i, value in enumerate(lst): print(i,
value)

Zip Combine multiple lists into tuples,
iterating over each element.

list(zip(list1, list2))

Unpacking Unpack elements from lists,
tuples, and dictionaries into
variables easily.

a, b, c = my_tuple

***args & kwargs Allow functions to take an
arbitrary number of arguments
and keyword arguments.

def func(*args, **kwargs):

Ternary Operator Write simple conditional
expressions in one line.

"even" if x % 2 == 0 else "odd"

Generators Use yield to create
memory-efficient generators
instead of full lists.

def gen(): yield x

Map, Filter, Reduce Functional programming tools for
element-wise mapping, filtering,
or reducing a sequence.

map(func, iterable)

https://winstonbrown.me

Shortcut / Concept Description Example

Context Managers Manage resources using with
statements (e.g., file handling).

with open("file.txt") as f:

Named Tuples Create lightweight, readable, and
immutable tuple-like objects.

from collections import namedtuple; Point
= namedtuple('Point', 'x y')

Counter Count elements in a list or other
iterable with ease.

from collections import Counter;
Counter(lst)

Defaultdict Use dictionaries with default
values for missing keys.

from collections import defaultdict; d =
defaultdict(int)

Datetime Manipulation Work with dates and times
effectively.

from datetime import datetime; now =
datetime.now()

Pathlib Modern and efficient way to work
with paths and file systems.

from pathlib import Path;
Path("myfile.txt").exists()

List Flattening Quickly flatten nested lists with
itertools.

from itertools import chain;
list(chain(*nested_list))

Dealing with JSON Parse JSON objects easily from
strings or files.

import json; data = json.loads(json_str)

Exception Handling with else Use else in try-except blocks to
run code only if no exception
occurred.

try: ... except: ... else: ...

Type Hinting Annotate code with type hints for
readability and IDE support.

def func(x: int) -> int:

